

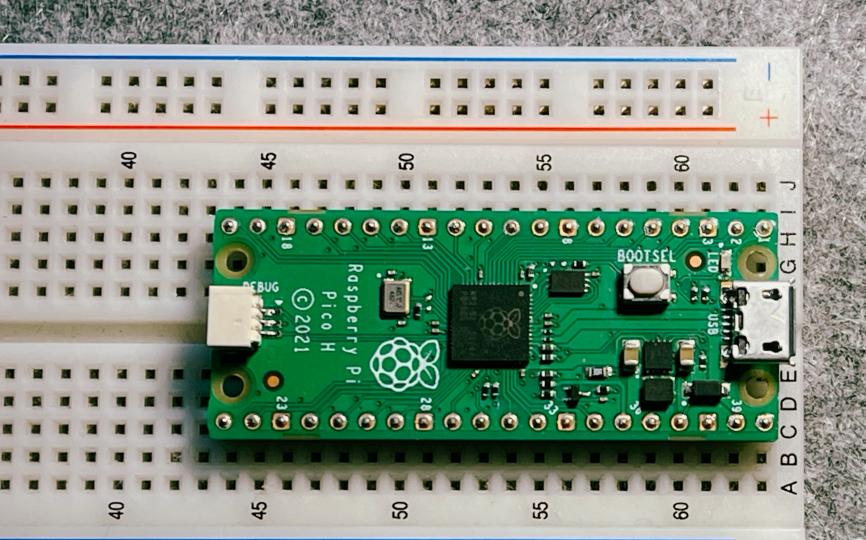
- 1. Einführung & Motivation
- 2. Was ist TinyML?
- 3. Hardware Raspberry Pi Pico
- 4. MicroPython für TinyML
- 5. Herausforderungen & Lösungsansätze

Die IoT-Revolution

- 41,1 Mrd. vernetzte Geräte bis 2030 (Source: IoT Analytics)
- Bedarf an autonomen, intelligenten Lösungen
- Aber: Ressourcenbeschränkungen!

Warum TinyML?

Vorteile	Beschreibung
Datenschutz	Daten verlassen das Gerät nicht.
Latenz	Millisekunden statt Sekunden.
Kosten	Keine Cloud-Gebühren, günstige Hardware.
Verfügbarkeit	Funktioniert offline.
Energieeffizienz	Batteriebetrieb für Monate/Jahre.


TinyML Definition

- Tiny Machine Learning
- KI-Modelle auf Mikrocontrollern
 - Speicherbedarf: < 1 MB</p>
 - Energieverbrauch: < 1 mW</p>

Anwendungsgebiete

- Wearables: Fitnesstracker, Gesundheitsmonitoring
- Voice Assistants: Wake-Word-Erkennung
- Predictive Maintenance: Industrie 4.0
- Smart Cities: Verkehrsoptimierung, Umweltüberwachung
- Autonome Systeme: Drohnen, Roboter

Warum Raspberry Pi Pico?

- Kostengünstig (~5€), weit verbreitet, aktive Community
- Technische Spezifikationen:
 - Dual-core ARM Cortex M0+ (133 MHz)
 - 264 KB SRAM, 2 MB Flash
 - 26 GPIO Pins
- MicroPython-Support out-of-the-box

Limitierungen von MCUs

- Begrenzter Speicher (KB statt GB)
- Eingeschränkte Rechenleistung
- Update-Herausforderungen

Vorteile von MicroPython

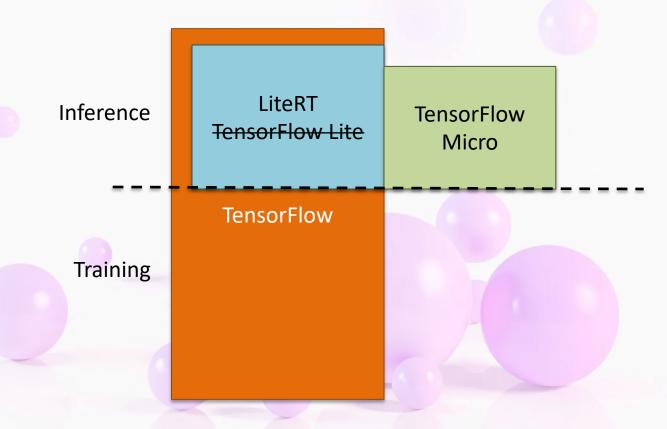
- Einfache Syntax, ideal für Prototyping
- Cross-Platform-Kompatibilität
- Interaktive REPL für Live-Testing

TensorFlow Lite Micro Integration

- Modelle im .tflite-Format
- Quantisierte Modelle für Speichereffizienz

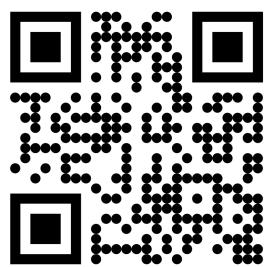
Entwicklungs-Workflow

- 1. Datensammlung
- 2. Training (Jupyter Notebook)
- 3. Modelloptimierung
- 4. TFLite-Konvertierung
- 5. MicroPython-Integration
- 6. Hardware-Test
- 7. Deployment



Herausforderung	Lösungsansatz
Begrenzter	Quantisierung, Pruning,
Speicher	Knowledge Distillation
Eingeschränkte	Optimierte Algorithmen,
Rechenleistung	Hardware-Beschleuniger
Einfache Modelle	Domain-spezifische Optimierungen, Kombination kleiner Modelle

TensorFlow Micro


Zusammenfassung

- TinyML ermöglicht intelligente IoT-Geräte ohne Cloud-Abhängigkeit.
- Raspberry Pi Pico + MicroPython ideale Entwicklungsplattform.
- Herausforderungen sind lösbar durch bewusste Design-Entscheidungen.

 Offene Frage: "In welchen Bereichen sehen Sie das größte Potenzial für TinyML?"

• Kontakt: <u>about.larsgregori.de</u>

